AVIRAL CLASSES

CHEMISTRY

CRASH COURSE

LECTURE - 01

TOPICS : Mole Concept

- 14 g of element X combine with 16 g of oxygen. On the basis of this information, which of the following is a correct statement (Atomic weight of oxygen = 16)
 - (a) The element of X could have an atomic weight of 7 and its oxide the formula XO
 - (b) The element X could have an atomic weight of 14 and its oxide the formula X_2O
 - (c) The element X could have an atomic weight of 7 and its oxide the formula X_2O
 - (d) The element X could have the atomic weight of 14 and its oxide the formula XO_2 .
- 2. A gas is found to have the formula $(CO)_x$. Its vapour density is 70. The value of x must be
 - (a) 7 (b) 4
 - (c) 5 (d) 6
- 3. The total number of electrons present in 18 mL of water (density of water is 1 g mL⁻¹) is
 - (a) 6.02×10^{23} (b) 6.02×10^{22}
 - (c) 6.02×10^{24} (d) 6.02×10^{25}
- 4. A metal oxide has the formula M_2O_3 . It can be reduced by H_2 to give free metal and water. 0.1596 g M_2O_3 required 6 mg of H_2 for complete reduction. The atomic mass of the metal is
 - (a) 27.9 (b) 79.8
 - (c) 55.8 (d) 159.8
- 5. The density of a liquid is 1.2 g/mL. There are 35 drops in 2 mL. The number of molecules in 1 drop is (molecular weight of liquid = 70)

(a)
$$\frac{1.2}{35} N_A$$
 (b) $\left(\frac{1}{35}\right)^2 N_A$

(c)
$$\frac{1.2}{(35)^2} N_A$$
 (d) 1.2 N_A

- 6. How many millilitres (mL) of 1 M H₂SO₄ solution is required to neutralise 10 mL of 1 M NaOH solution ?
 - (a) 2.5 mL (b) 5.0 mL
 - (c) 10.0 mL (d) 20.0 mL
- 7. In a solution, the concentration of $CaCl_2$ is 5 M and concentration of $MgCl_2$ is 5 m. If he specific gravity of the solution is 1.05, the concentration of Cl^- in the solution is
 - (a) 10 M (b) 20 M
 - (c) 18.5 M (d) 17.12 M
- 8. 50.0 kg of $N_{2(g)}$ and 10.0 kg of $H_{2(g)}$ are mixed to produce $NH_{3(g)}$. Identify the limiting reagent in the production of NH_3 in this situation.
 - (a) Nitroge
 - (b) Hydrogen
 - (c) can not be predicated
 - (d) None of these
- 9. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl ?
 - (a) 0.339 (b) 0.011
 - (c) 0.029 (d) 0.044
- 10. If density of 3 M of NaCl is 1.25 g mL⁻¹, the molality of the same solution will be
 - (a) 3 m (b) 2.50 m
 - (c) 1.75 m (d) 2.79 m

AVIRAL CLASSES

CHEMISTRY

CRASH COURSE

LECTURE - 01

TOPICS : Mole Concept (SOLUTION)

1. (c) : If atomic weight of *X* is 7 and 14 g of *X* combine with 16 g of O, the molecular oxide will be X₂O.

2. (c) : Molecular mass of $(CO)_x = 2 \times 70 = 140$ E.F mass = 12 + 16 = 28Hence, $x = \frac{140}{28} = 5$

- 3. (c): $18 \text{ mL H}_2\text{O} = 18 \text{ g H}_2\text{O} = 1 \text{ mol}$ = $6.02 \times 10^{23} \text{ molecules}$ as there are ten electrons in H₂O, Avogadro's number should be multiplied with 10. = $10 \times 6.02 \times 10^{23} e^- = 6.02 \times 10^{24} e^-$.
- 4. (c): $M_2O_3 + 3H_2 \rightarrow 2M + 3H_2O_{(2x+48)g} + 6g_{g}$ x = atomic mass of metal $\therefore 0.006 \text{ g } H_2 \text{ reduces } 0.1596 \text{ g } M_2O_3$
 - ∴ 6 g H₂ will reduce $\frac{0.1596}{0.006} \times 6$ g M₂O₃ = 159.6 M₂O₃ 2x + 48 = 159.6 \Rightarrow 2x = 111.6 \Rightarrow x = 55.8
- 5. 13. (c) : Volume of one drop = $\frac{2}{35}$ mL Number of moles in one drop = $\frac{2 \times 1.2}{35 \times 70} = \frac{1.2}{(35)^2}$ Number of molecules in one drop = $\frac{1.2}{(35)^2} \times N_A$ (N_A = Avogadro's number)
- 6. (b): $1 \text{ M } \text{H}_2\text{SO}_4 = 2 \text{ N } \text{H}_2\text{SO}_4$ 1 M NaOH = 1 N NaOH $N_1V_1 = N_2V_2$ (H_2SO_4) (NaOH) $2 \times V_1 = 1 \times 10 \text{ or } V_1 = 5 \text{ mL}$

7. . (d): $\frac{1}{M} = \frac{1}{\rho} \left(\frac{1}{m} + 10^{-3} \times M' \right)$ $M' = 24 + 71 = 95; \ \rho = 1.05$ $= \frac{1}{M} = \frac{1}{1.05} \left(\frac{1}{5} + 0.095\right)$

or
$$M = 3.56$$
 or $\frac{1}{M} = 0.28095$

- $\therefore \text{ Molarity of MgCl}_2 = 3.56$
- \therefore Concentration of Cl⁻ = 5 × 2 + 3.56 × 2 = 17.12 M

8.

(b): The balanced chemical reaction is $N_2 + 3H_2 \implies 2NH_3$ From the above balanced equation, 1 mol of $N_{2(g)}$ reacts with 3 moles of $H_{2(g)}$.

:. Moles of N₂ =
$$\frac{50,000 \text{ g}}{28 \text{ g mol}^{-1}}$$
 = 1785.71 mol
10,000 g = 1000 2

or, Moles of H₂ = $\frac{10,000 \text{ g}}{2.016 \text{ g mol}^{-1}} = 4960.3 \text{ mol}$

 $\therefore~1785.7\ mol\ of\ N_2\ react with\ 3\times1785.7\ mol\ = 5357.1\ mol\ but we have 4960.3\ mol\ of\ H_2\ only.$ Therefore, $H_2\ is\ a$ limiting reagent.

9.

(c) : The reaction equation is PbO + 2HCl → PbCl₂ + H₂O. Molar mass of PbO = 223 g mol⁻¹. Now, moles of PbO = $\frac{6.5}{223}$ = 0.029 mol and moles of HCl = $\frac{3.2}{36.5}$ = 0.088 mol 1 mol of PbO reacts with 2 moles of HCl. Therefore, PbO is a limiting reagent. 0.029 mol of PbO will produce PbCl₂ = 0.029 mol 33. (b): Mol. mass = mass of 22.4 L at STP $= \frac{10}{5.6} \times 22.4 = 40$ E.F. mass of HF = 1 + 19 = 20. Hence $n = \frac{40}{20} = 2$ \therefore Molecular formula = (Empirical formula).

 $\therefore \quad \text{Molecular formula} = (\text{Empirical formula})_n \\ = (\text{HF})_2 = \text{H}_2\text{F}_2$

3

10. (d): Molarity = 3 mol L⁻¹ Mass of NaCl in 1 L solution = $3 \times 58.5 = 175.5$ g Mass of 1 L solution = $1000 \times 1.25 = 1250$ g Mass of water in solution = 1250 - 175.5 = 1074.5 g \therefore Molality = $\frac{\text{No. of moles of solute}}{\text{Mass of solvent (in kg)}} = \frac{3 \text{ mol}}{1.0745 \text{ kg}}$

= 2.79 m